On L-functions of modular elliptic curves and certain K3 surfaces

نویسندگان

چکیده

Inspired by Lehmer's conjecture on the nonvanishing of Ramanujan $\tau$-function, one may ask whether an odd integer $\alpha$ can be equal to $\tau(n)$ or any coefficient a newform $f(z)$. Balakrishnan, Craig, Ono, and Tsai used theory Lucas sequences Diophantine analysis characterize non-admissible values newforms even weight $k\geq 4$. We use these methods for $2$ $3$ apply our results $L$-functions modular elliptic curves certain $K3$ surfaces with Picard number $\ge 19$. In particular, complete list $f_\lambda(z)=\sum a_\lambda(n)q^n$ that are $\eta$-products, $N_\lambda$ conductor some curve $E_\lambda$, we show if $|a_\lambda(n)|<100$ is $n>1$ $(n,2N_\lambda)=1$, then \begin{align*} a_\lambda(n) \in \,& \{-5,9,\pm 11,25, \pm41, \pm 43, -45,\pm47,49, \pm53,55, \pm59, \pm61, 67\}\\ & \,\,\, \cup \, \{-69,\pm 71, 73,75, \pm79,\pm81, 83, \pm89,\pm 93 97, 99\}. \end{align*} Assuming Generalized Riemann Hypothesis, rule out few more possibilities leaving 11,25,-45,49,55,-69,75,\pm 81,\pm 93,

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Elliptic Curves in K3 Surfaces

We compute the genus g = 1 family GW-invariants of K3 surfaces for non-primitive classes. These calculations verify Göttsche-Yau-Zaslow formula for non-primitive classes with index two. Our approach is to use the genus two topological recursion formula and the symplectic sum formula to establish relationships among various generating functions. The number of genus g curves in K3 surfaces X repr...

متن کامل

Classification of All Jacobian Elliptic Fibrations on Certain K3 Surfaces

In this paper we classify all configurations of singular fibers of elliptic fibrations on the double cover of P ramified along six lines in general position.

متن کامل

On Elliptic K3 Surfaces

We make a complete list of all possible ADE-types of singular fibers of complex elliptic K3 surfaces and the torsion parts of their MordellWeil groups.

متن کامل

The p-Adic L-Functions of Modular Elliptic Curves

The arithmetic theory of elliptic curves enters the new century with some of its major secrets intact. Most notably, the Birch and Swinnerton-Dyer conjecture, which relates the arithmetic of an elliptic curve to the analytic behaviour of its associated L-series, is still unproved in spite of important advances in the last decades, some of which are recalled in Chapter 1. In the 1960’s the pione...

متن کامل

On the rank of certain parametrized elliptic curves

In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ramanujan Journal

سال: 2021

ISSN: ['1572-9303', '1382-4090']

DOI: https://doi.org/10.1007/s11139-021-00388-w